An intelligent dynamic setting control framework for a multimode impurity removal process

Author:

Sun Bei12,Chen Weiyang1ORCID,Li Yonggang1,Zhang Xulong1,Liu Guoxin1

Affiliation:

1. School of Automation , Central South University , Changsha 410083 , China

2. Peng Cheng Laboratory , Shenzhen 518000 , China

Abstract

Abstract The main task of the impurity removal process is to control the oxidation reduction potential (ORP) within the range of the optimized set value. The impurity removal process is essentially an oxidation-reduction process. Oxidation reduction potential (ORP) is an external reflection of reaction state inside the impurity removal reactor. However, actual industry is time-varying, nonlinear and multimode. It is difficult to determine the appropriate dosage of impurity remover in practice. This will lead to large fluctuations in the operation mode, affecting the safety and stability of the process and the final product quality. To solve these problems, an intelligent dynamic setting control framework (IDSCF) for the multimode impurity removal process is proposed in this paper. It includes a preset module of the dosage of impurity remover based on impurity remover utilization (IRU) estimation, an operation mode detection module based on autoencoder, a normal mode adjustment module based on fuzzy logic, and an unsteady mode adjustment module based on case-based reasoning (CBR). The framework can determine the reasonable preset dosage of impurity remover and adjust the dosage according to the current operation mode of the impurity removal process. Because the operation mode is related to the residual dosage of impurity remover added over a period of time, that is, the accumulative effect of the large-scale metallurgical reactor. When calculating the preset dosage of impurity remover, the reactant accumulation ratio (RAR) is calculated, which makes the calculation of the preset value more reasonable. In addition, it can detect the unsteady modes causing large fluctuations in the process and adjust them in time. Experiments are carried out in accordance with the data of an actual cobalt removal process. The results show that this method can effectively improve the stability of the impurity removal process, control the ORP within the set range and cope with complex mode changes.

Funder

National key research and development program

National Natural Science Foundation of China

Projects of International Cooperation and Exchanges NSFC

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3