Optimization of multiple parameters of coking wastewater (CWW): catalytic thermolysis (CT) at high pressure reactor (HPR)

Author:

Verma Vibha1,Chaudhari Parmesh Kumar1,Mazumdar Bidyut1

Affiliation:

1. Department of Chemical Engineering, National Institute of Technology, 492010, Raipur, India

Abstract

AbstractPresent study deals with the treatment of coking waste water (CWW) for the reduction of pollutants COD, phenol and cyanide using catalytic thermolysis (CT). For screening of catalyst and optimization of pH the CT was performed at 100 °C, pH = 3–11 using catalyst mass loading Cw = 3 g/L. In this study Cu (NO3)2 gave best performance. Further, CT was carried out using Cu (NO3)2 catalyst in high pressure reactor (HPR). The investigated parameters range were initial pH (pHi) = 3–11, Cw = 1–5 g/L, temperature (T) = 100–160 °C and treatment time (tR) = 6 h. The maximum percentage reduction for COD, phenol and cyanide were 83.33, 80.57 and 97.61%, respectively at pH = 9, Cw = 4 g/L, T = 140 °C and tR = 6 h. The CT did not give complete reduction of pollutant; therefore it was further treated using adsorption process as second stage treatment. The initial value of COD = 610 mg/L, phenol = 70.58 mg/L and cyanide = 0.45 mg/L were further reduced to 98.85, 100.00 and 55.55%, respectively, when adsorption process was performed at pH = 9, adsorbents dose Aw = 4 g/L, tR = 2 h. The response surface methodology (RSM) was performed through central composite design (CCD) for the designing of experiments and optimization of both the process. The kinetics studies of CT at HPR showed first order with respect to COD and phenol, and 0.24–0.608 order with respect to CW.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3