Experimental study on the scale-up of a multi-ring inclined nozzle spout-fluid bed by electrical capacitance tomography

Author:

Chen Zhao1,Jiang Lin1,Yang Xu1,Liu Zebing1,Liu Rongzheng1,Liu Bing1,Shao Youlin1,Liu Malin1

Affiliation:

1. Institute of Nuclear and New Energy Technology, Tsinghua University , Beijing , PRC

Abstract

Abstract Scale-up studies of fluidized beds are important for numerous fields. Fluidization in a multi-ring inclined nozzle spout-fluid bed (MRIN spout-fluid bed) is one of the most critical factors that affect the coating efficiency and uniformity of tri-structural isotropic (TRISO) nuclear particles in the fluidized bed chemical vapor deposition (FB-CVD) process. In this work, the flow pattern similarity principle was proposed to scale up a specially designed spout-fluid bed, which was aimed at maintaining the gas-solid contact efficiency, and was validated by electrical capacitance tomography (ECT) measurements. First, the traditional ECT method was developed for the specially designed MRIN spout-fluid bed according to the filling method. Then, the reconstruction algorithms were updated using the alternating direction multiplier method (ADMM) by introducing optimization constraints. The fluidization laws were investigated for different superficial gas velocities and distributor structures. We found that the gas distributor structure affected the merge point of the jets, which played an essential role in fluidization pattern changes. The statistically-based coefficient of variation (Cv) was proposed to distinguish the different flow patterns. Multi-ring spouting was then selected as a typical flow pattern for good fluidization and mixing, where the Cv ranged from 0.25 to 0.65. Then, the optimal design principles for the enlarged spout-fluid bed gas distributor were obtained. We determined that a smaller nozzle diameter (0.71d 0), larger nozzle spacing (1.12x 0), and slightly inclined angle (1.50θ 0) could improve fluidization, and that nozzle spacing was the most important factor. This study may be beneficial for the industrial design of the FB-CVD process and for the fabrication of high-density nuclear fuel particles. Additionally, it could be presented to a more general audience for scaling-up fluidized beds with a complex distributor, which would be beneficial for the fluidization research community.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3