On Kantorovich variant of Brass-Stancu operators

Author:

Bodur Murat1,Bostancı Tuğba2,Başcanbaz-Tunca Gülen3

Affiliation:

1. Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Konya Technical University , Konya , Turkey

2. Basic Sciences Department, Naval Petty-Officer Vocational School, National Defence University , 77720-Altınova , Yalova , Turkey

3. Department of Mathematics, Faculty of Science, Ankara University , Str. Dögol 06100, Beşevler , Ankara , Turkey

Abstract

Abstract In this study, we deal with Kantorovich-type generalization of the Brass-Stancu operators. For the sequence of these operators, we study L p {L}^{p} -convergence and give some upper estimates for the L p {L}^{p} -norm of the approximation error via first-order averaged modulus of smoothness and the first-order K K -functional. Moreover, we show that the Kantorovich generalization of each Brass-Stancu operator satisfies variation detracting property and is bounded with respect to the norm of the space of functions of bounded variation on [ 0 , 1 ] \left[0,1] . Finally, we present graphical and numerical examples to compare the convergence of these operators to given functions under different parameters.

Publisher

Walter de Gruyter GmbH

Reference23 articles.

1. D. D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM vol. 57, Birkhäuser Verlag, Basel, 1982, pp. 241–251, https://doi.org/10.1007/978-3-0348-6308-7_23.

2. D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo 20 (1983), no. 2, 211–229, https://doi.org/10.1007/BF02575593.

3. O. Agratini, Application of divided differences to the study of monotonicity of a sequence of D.D. Stancu polynomials, Rev. Anal. Numér. Théor. Approx. 25 (1996), no. 1, 3–10, https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art1.

4. H. H. Gonska, On the composition and decomposition of positive linear operators, in: V. V. Kovtunets, et al., (ed.), Approximation Theory and its Applications. Proc. Int. Conf. ded. to the memory of Dzyadyk, Kiev, Ukraine, May 27–31, 1999. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., Mat. Zastos. 31 (2000), 161–180.

5. L. Yun and X. Xiang, On shape-preserving properties and simultaneous approximation of Stancu operator, Anal. Theory Appl. 24 (2008), no. 2, 195–204, https://doi.org/10.1007/s10496-008-0195-0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3