The Effect of Hydrostatic Pressure on Physical Properties and Microstructure of Spruce and Cherry

Author:

Bucur Voichita,Garros Simone,Barlow Claire Y.

Abstract

Summary The effect of hydrostatic pressure on the density, the ultrasonic velocities and the microstructure of spruce and cherry wood has been studied. Generally speaking, under hydrostatic pressure wood becomes less heterogeneous and less anisotropic than natural wood. In spruce, crushing and buckling of the thin-walled cells in the earlywood takes place. This also has the effect of disrupting the medullary rays, which assume a zig-zag path through the structure. Cherry has a much more homogeneous structure, and the main effect of the hydrostatic pressure is compaction of the vessels by buckling of the walls. The fibres are scarcely affected by the treatment. The width of the earlywood zone decreased after the application of pressure by 26% in spruce, and by 11% in cherry. The average density was increased by the hydrostatic pressure by 26% for spruce and by 46% for cherry. The densitometric profile of spruce demonstrates significant changes following the pressure treatment, with the minimum density DMin increasing and the maximum density DMax decreasing. For cherry, the densitometric profile is shifted rather uniformly towards higher densities, and the annual ring profile is spatially slightly compacted but otherwise similar to that of untreated wood. The anisotropy of wood (expressed by the ratio of acoustic invariants) decreased by 56% for spruce and by 33% for cherry. The structural damage in spruce is predominantly found in the radial (R) direction, and this corresponds to a reduction of 73% in the velocity of the longitudinal ultrasonic waves in the radial direction, VRR. In cherry, the structural damage is mainly in the transverse, T direction. The velocity of the longitudinal ultrasonic waves in the transverse direction, VTT is reduced by 44%. The medullary rays in cherry seem to be the most important anatomical feature influencing the propagation of ultrasonic waves.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3