Affiliation:
1. Department of Mechanical Engineering, Urmia University, Urmia, Iran
2. South Ural State University, Chelyabinsk, Russian Federation
Abstract
AbstractA nonlocal elasticity theory is a popular growing technique for mechanical analysis of the micro- and nanoscale structures which captures the small-size effects. In this paper, a comprehensive study was carried out to investigate the influence of the nonlocal parameter on the bifurcation behavior of a capacitive clamped-clamped nano-beam in the presence of the electrostatic and centrifugal forces. By using Eringen’s nonlocal elasticity theory, the nonlocal equation of the dynamic motion for a nano-beam has been derived using Euler–Bernoulli beam assumptions. The governing static equation of motion has been linearized using step by step linearization method; then, a Galerkin based reduced order model have been used to solve the linearized equation. In order to study the bifurcation behavior of the nano-beam, the static non-linear equation is changed to a one degree of freedom model using a one term Galerkin weighted residual method. So, by using a direct method, the equilibrium points of the system, including stable center points, unstable saddle points and singular points have been obtained. The stability of the fixed points has been investigated drawing motion trajectories in phase portraits and basins of attraction set and repulsion have been illustrated. The obtained results have been verified using the results of the prior studies for some cases and a good agreement has been observed. Moreover, the effects of the different values of the nonlocal parameter, angular velocity and van der Waals force on the fixed points have been studied using the phase portraits of the system for different initial conditions. Also, the influence of the nonlocal beam theory and centrifugal forces on the dynamic pull-in behavior have been investigated using time histories and phase portraits for different values of the nonlocal parameter.
Subject
Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献