Affiliation:
1. Department of Mechanical and Automation Engineering , Da-Yeh University , No. 168, University Road, Dacun , Changhua 51591 , Taiwan (R.O.C.)
Abstract
Abstract
The main objects of this paper focus on the complex dynamics and chaos control of an electromagnetic valve train (EMV). A variety of periodic solutions and nonlinear phenomena can be expressed using various numerical techniques such as time responses, phase portraits, Poincaré maps, and frequency spectra. The effects of varying the system parameters can be observed in the bifurcation diagram. It shows that this system can undergo a cascade of period-doubling bifurcations prior to the onset of chaos. Lyapunov exponents and Lyapunov dimensions are employed to confirm chaotic behavior for EMV. A proposed continuous feedback control method based on synchronization characteristics eliminated chaotic oscillations. Numerical simulations are utilized to verify the feasibility and efficiency of the proposed control technique. Finally, some robustness analysis of parametric perturbation on EMV system with synchronization control is confirmed by Lyapunov stability theory and numerical simulations.
Subject
Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献