Numerical Exploration of Heat Transfer and Lorentz Force Effects on the Flow of MHD Casson Fluid over an Upper Horizontal Surface of a Thermally Stratified Melting Surface of a Paraboloid of Revolution

Author:

Makinde O. D.,Sandeep N.,Ajayi T. M.,Animasaun I. L.

Abstract

AbstractConsidering the recent aspiration of experts dealing with the painting of aircraft and bonnet of cars to further understand the relevance of skin friction and heat transfer while painting all these objects that are neither horizontal nor vertical, neither a cone/wedge or cylinder but upper horizontal surface of a paraboloid of revolution; a two-dimensional electrically conducting Casson fluid flow on an upper horizontal thermally stratified surface of a paraboloid of revolution is analyzed. The influence of melting heat transfer and thermal stratification are properly accounted for by modifying classical boundary condition of temperature. Plastic dynamic viscosity and thermal conductivity of the fluid are assumed to vary linearly with temperature. In view of this, all necessary models were modified to suit the case$T_m<T_\infty$. It is assumed that natural convection is driven by buoyancy; hence the suitable model of Boussinesq approximation is adopted. A suitable similarity transformation is applied to reduce the governing equations to coupled ordinary differential equations. These equations along with the boundary conditions are solved numerically by using Runge–Kutta technique along with shooting method. Effects of the magnetic field, temperature-dependent plastic dynamic viscosity and buoyancy parameters on the velocity and temperature are showed graphically and discussed. Normal influence of Lorentz force exists on Casson fluid flow when the thickness of the surface is small. Scientists and experts are urge to note an adverse effect of this force occurs on the fluid flow when the thickness of the surface is large.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

Reference96 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3