Local-periodic solutions for functional dynamic equations with infinite delay on changing-periodic time scales

Author:

Wang Chao1,Agarwal Ravi P.23,O’Regan Donal4

Affiliation:

1. Department of Mathematics , Yunnan University Kunming , Yunnan , 650091 , China

2. Department of Mathematics , Texas A&M University-Kingsville , TX 78363-8202 , Kingsville , USA

3. Department of Mathematical Sciences , Florida Institute of Technology , Melbourne , FL 32901 , USA

4. School of Mathematics Statistics and Applied Mathematics , National University of Ireland , Galway , Ireland

Abstract

Abstract In this paper, by using the concept of changing-periodic time scales and composition theorem of time scales introduced in 2015, we establish a local phase space for functional dynamic equations with infinite delay (FDEID) on an arbitrary time scale with a bounded graininess function μ. Through Krasnoseľskiĭ’s fixed point theorem, some sufficient conditions for the existence of local-periodic solutions for FDEID are established for the first time. This research indicates that one can extract a local-periodic solution for dynamic equations on an arbitrary time scale with a bounded graininess function μ through some index function.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quaternion-Valued Dynamic Equations and Henstock–Kurzweil Delta-Integrals on Time Scales: A Survey;Journal of Mathematical Sciences;2024-02

2. Almost periodic fractional fuzzy dynamic equations on timescales: A survey;Mathematical Methods in the Applied Sciences;2023-11-08

3. Almost Anti-Periodic Discrete Oscillation of General N-Dimensional Mechanical System and Underactuated Euler-Lagrange System;Applied Sciences;2022-02-14

4. Periodicity on isolated time scales;Mathematische Nachrichten;2022-01-18

5. Shift Invariance and Matched Spaces of Time Scales;Combined Measure and Shift Invariance Theory of Time Scales and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3