Affiliation:
1. Dipartimento di Matematica e Informatica Università di Palermo I-90123 Palermo Italy
2. Dipartimento di Matematica Università della Calabria Arcavacata di Rende Cosenza Italy
Abstract
Abstract
We define and study the moduli d(x, 𝓐, D) and i(x, 𝓐,D) related to monotonicity of a given function x of the space L
0(Ω) of real-valued “measurable” functions defined on a linearly ordered set Ω. We extend the definitions to subsets X of L
0(Ω), and we use the obtained quantities, d(X) and i(X), to estimate the Hausdorff measure of noncompactness γ(X) of X. Compactness criteria, in special cases, are obtained.
Reference15 articles.
1. Akhmerov, R. R.—Kamenskii, M. I.—Potapov, A. S.—Rodkina, A. E.—Sadovskii, B. N.: Measures of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel, Boston and Berlin, 1992.
2. Appell, J.—Banaś, J.—Merentes, N.: Some quantities related to monotonicity and bounded variation of functions, J. Math. Anal. Appl. 367 (2010), 476–485.10.1016/j.jmaa.2010.02.004
3. Appell, J.—De Pascale, E.: Some parameters associated with the Hausdorff measure of noncompactness in spaces of measurable functions, Boll. Un. Mat. Ital. (6) 3–B (1984), 497–515.
4. Appell, J.—Zabreiko, P. P.: Nonlinear Superposition Operators. Cambridge Tracts in Math. 95, Cambridge University Press, 1990.
5. Avallone, A.—Trombetta, G.: Measures of noncompactness in the space L0 and a generalization of the Arzelà-Ascoli theorem, Boll. Un. Mat. Ital. (7) 5–B (1991), 573–587.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献