Author:
Grohmann Steffi,Menne Manuela,Hesse Diana,Bischoff Sabine,Schiffner René,Diefenbeck Michael,Liefeith Klaus
Abstract
Abstract
Implant-related infections like periprosthetic joint infections (PJI) are still a challenging issue in orthopedic surgery. In this study, we present a prophylactic anti-infective approach based on a local delivery of the antibiotic gentamicin. The local delivery is achieved via a nanoscale polyelectrolyte multilayer (PEM) coating that leaves the bulk material properties of the implant unaffected while tuning the surface properties. The main components of the coating, i.e. polypeptides and sulfated glycosaminoglycans (sGAG) render this coating both biomimetic (matrix mimetic) and biodegradable. We show how adaptions in the conditions of the multilayer assembly process and the antibiotic loading process affect the amount of delivered gentamicin. The highest concentration of gentamicin could be loaded into films composed of polypeptide poly-glutamic acid when the pH of the loading solution was acidic. The concentration of gentamicin on the surface could be tailored with the number of deposited PEM layers. The resulting coatings reveal a bacteriotoxic effect on Staphylococcus cells but show no signs of cytotoxic effects on MC3T3-E1 osteoblasts. Moreover, when multilayer-coated titanium rods were implanted into contaminated medullae of rat tibiae, a reduction in the development of implant-related osteomyelitis was observed. This reduction was more pronounced for the multifunctional, matrix-mimetic heparin-based coatings that only deliver lower amounts of gentamicin.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献