Titanium coating: introducing an antibacterial and bioactive chitosan-alginate film on titanium by spin coating

Author:

Vakili Nasim1,Asefnejad Azadeh1

Affiliation:

1. Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran 4515-775, Iran

Abstract

AbstractCoating of titanium (Ti) implants with biocompatible polymers were performed to improve bone healing. In this study, pure Ti implants were coated via chitosan and alginate by spin coating method at 1000, 4000, and 8000 rpm. The coating layer was cross-linked by calcium chloride. Their chemical structures were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) evaluations. The morphology of the created coating was observed by scanning electron microscopy (SEM), and the best uniformity was observed in the prepared coating at 8000 rpm (6093× g) spinal speed. The adhesion strength of the coating layer on the substrate was evaluated by the adhesion pull-off test. Also, the best adhesion strength was achieved at an 8000 rpm (6093× g) coating rate. Bioactivity of the chitosan-alginate coating on Ti sheets was evaluated by soaking the samples in a simulated body fluid (SBF) solution. The apatite formation on prepared Ti sheets was investigated by SEM, XRD, and energy dispersive X-ray spectroscopy (EDS). A higher mineralization appeared on coated samples compared with pure Ti. The antibacterial behavior of the implants was analyzed by bacterial counting against Escherichia coli. The presence of chitosan and alginate on the Ti sheets resulted in a better antibacterial effect. In-vitro experiments, with L929 fibroblast cells, confirmed the biocompatibility of the implants. Coating the Ti implants with chitosan and alginate improved biomineralization and biological behavior of the implant especially at the spinal speed of 8000 rpm (6093× g). These implants can support osteoblast cell adhesion and facilitate bone regeneration.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3