Environmentally Friendly Monolithic Highly-Porous Biocarbons as Binder-Free Supercapacitor Electrodes

Author:

Orlova Tatiana S.,Shpeizman Vitaly V.,Glebova Nadejda V.,Nechitailov AndreyA.,Spitsyn Andrey A.,Ponomarev Dmitry A.,Gutierrez-Pardo Antonio,Ramirez-Rico Joaquin

Abstract

Abstract A simple, low-cost and environmentally friendly method has been used to obtain highly porous biomorphic carbon monoliths with a good combination of interconnected macro-, mesoand microporosity, and good electrical conductivity and mechanical strength, making these biocarbon materials interesting for electrochemical applications as binder-free electrodes. Highly porous monolithic biocarbons were obtained from beech wood precursors through pyrolysis and subsequent surface modification in a steam heated to 970°C with different activation times. The obtained biocarbons demonstrated good electrical conductivity and mechanical strength. They were studied as electrodes for supercapacitors in half cell experiments, demonstrating maximum gravimetric capacitance of 200 F g-1 in a basic media at scan rate 1 mV s-1. Galvanostatic charge-discharge experiments showed maximum capacitance of 185 F g-1 at current density of 0.15 A g-1 and ~100 F g-1 at current density of 0.75 A g-1. It has been shown that in addition to the developed porous surface, the micropores with diameters exceeding 1 nm play a key role for the enhanced electrochemical capacity. Long-cycling experiments demonstrated excellent stability of the monolithic biocarbon electrodes with no reduction of the initial capacitance values after 600 cycles in voltammetry.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference4 articles.

1. Micro–mesoporous carbons from rice husk as active materials for supercapacitors

2. i;Taer;KnE Engineering,2016

3. de;Bautista;Refract Met Mater,2009

4. de;Parfen;Phys Solid State,2006

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3