The global harnack estimates for a nonlinear heat equation with potential under finsler-geometric flow

Author:

Azami Shahroud1

Affiliation:

1. Department of pure Mathematics , Faculty of Science Imam Khomeini International University , Qazvin , Iran

Abstract

Abstract Let (Mn , F(t), m), t ∈ [0, T], be a compact Finsler manifold with F(t) evolving by the Finsler-geometric flow $\begin{array}{} \displaystyle \frac{\partial g(x,t)}{\partial t}=2h(x,t), \end{array}$ where g(t) is the symmetric metric tensor associated with F, and h(t) is a symmetric (0, 2)-tensor. In this paper, we consider local Li-Yau type gradient estimates for positive solutions of the following nonlinear heat equation with potential $$\begin{array}{} \displaystyle \partial_{t}u(x,t)=\Delta_{m}u(x,t)-\mathcal{R}(x,t)u(x,t) -au(x,t)\log u(x,t),\quad(x,t)\in M\times [0,T], \end{array}$$ along the Finsler-geometric flow, where 𝓡 is a smooth function, and a is a real nonpositive constant. As an application we obtain a global estimate and a Harnack estimate. Our results are also natural extension of similar results on Riemannian-geometric flow.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference22 articles.

1. Abolarinwa, A.: Gradient estimates for anonlinear parabolic equation with potential under geometric flow, Electron. J. Differential Equations 2015(12) (2015), 1–11.

2. Azami, S.—Razavi, A.: Existence and uniqueness for solutions of Ricci flow on Finsler manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), 21 pp.

3. Azami, S.—Razavi, A.: Yamabe flow on Berwald manifolds, Int. J. Geom. Methods Mod. Phys. 12 (2015), 27 pp.

4. Bao, D.: On two curvature-driven problems in Riemann-Finsler geometry. Finsler geometry, Sapporo 2005 – in memory of Makoto Matsumoto, 19C71, Adv. Stud. Pure Math. 48, Math. Soc. Japan, Tokyo, 2007.

5. Bao, D.—Chern, S.—Shen, Z.: An introduction to Riemannian Finsler geometry, Grad. Texts in Math. 200, Springer-Verlag, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3