Randomly cross-linked amphiphilic copolymer networks of n-butyl acrylate and N,N-dimethylacrylamide: synthesis and characterization

Author:

Ioannou Anastasia I.1,Apostolides Demetris E.1,Patrickios Costas S.1ORCID

Affiliation:

1. Department of Chemistry , University of Cyprus , 1 University Avenue, Aglanjia, 2109 Nicosia , Cyprus

Abstract

Abstract Five randomly cross-linked amphiphilic copolymer networks (ACPN) were prepared via the free radical cross-linking copolymerization of the hydrophobic n-butyl acrylate (BuA) and the hydrophilic N,N-dimethylacrylamide (DMAAm), in the presence of a small amount (5 mol% with respect to the sum of BuA plus DMAAm monomers) of the hydrophobic 1,6-hexanediol diacrylate (HexDA) cross-linker, initiated by 4,4ʹ-azobis(4-cyanovaleric acid) in 1,4-dioxane at a 10 % w/v total monomer concentration. The five ACPNs differed in their BuA content, fixed at 10, 30, 50, 70 and 90 mol%. The two homopolymer networks, BuA and DMAAm, were also prepared using the same polymerization method. Thus, this study involved a total of seven polymer networks, forming a homologous series with BuA contents ranging from 0 to 100 mol%. These networks were characterized in terms of their degrees of swelling in tetrahydrofuran (THF) and water, their mechanical properties in water, and their adhesion to human skin. The degrees of swelling (DS) of the networks in THF were higher than those in water because THF is a non-selective solvent, whereas water is selective for the hydrophilic DMAAm units. The DSs in THF increased with the network content in the less polar BuA units, while the opposite was true for the DSs in water which decreased with the content in the hydrophobic BuA units from 11 (0 mol% BuA) down to 1.1 (100 mol% BuA). A maximum in the elastic modulus was observed for the hydrogel with 50 mol% BuA, reflecting the opposing effects of polymer composition in soft polymer (polyBuA) content and hydrogel water content. In contrast, the tensile strain at break increased monotonically with the hydrogel BuA content, reaching a remarkable ∼900 % for the hydrogel with 90 mol% BuA. Finally, the adhesion of the ACPNs, both in their dried and hydrated states, onto human skin was explored. The adhesion of the hydrated samples onto skin was stronger than that of the dried ones. The hydrated ACPN with 30 mol% BuA exhibited the strongest adhesion onto skin, attributable to the best combination of a rather high content in polar DMAAm units (70 mol%), and a rather low aqueous DS (∼2.5), with the low DS value causing only a small dilution in the DMAAm units participating in the polar interactions with skin. The present work demonstrates that, even in this synthetically simple ACPN system, the multiple effects of ACPN composition on a certain property, in some cases opposing and in some other cooperating, lead to a rather complicated behavior. In particular, as the BuA content increases, some properties display maxima (elastic modulus, stress at break and fracture energy of hydrated ACPNs, and adhesion of hydrated ACPNs onto skin) while some other properties exhibit monotonic increases (strain at break of hydrated ACPNs, and adhesion of dried ACPNs onto skin). Thus, the optimal ACPN for a particular application will highly depend on the property best-serving the particular application, e.g., the ACPNs with 30, 50 and 90 mol% BuA for strongest wet adhesion to skin, stiffest hydrogel response, and highest hydrogel extensibility and toughness, respectively.

Funder

The Republic of Cyprus

The Research and Innovation Foundation of Cyprus

European Regional Development Fund

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3