Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure

Author:

Chen Shunzhang1,Cheng Yanxia1,Zeng Qian1,Zhu Ting1,Li Feize1,Lan Tu1,Yang Yuanyou1,Yang Jijun1,Liao Jiali1,Liu Ning1

Affiliation:

1. Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China

Abstract

Abstract Although bioreduction induced by microorganisms has been considered to play an important role in the chemical and migration behaviors of uranium in nature, the accurate determination of tetravalent uranium reduced by microorganisms is still difficult to achieve. In this work, potentiometric titration via K2Cr2O7 was used to quantitatively determine the microorganism reduced tetravalent uranium (U(IV)) for the first time. By evaluating the influence of microorganism substance content on the titration of U(IV), the appropriate determination range of U(IV) and biomass was confirmed, and U(IV) induced by bioreduction in three microorganisms was determined. With this method, U(IV) of more than 0.12 mg in microorganisms can be quantitatively measured with an accuracy of 2.2% and a precision of 1.3%, which has been established with the premise that the pretreatment biomass and quantity of U(IV) are in an appropriate range. Compared with the estimated values via the changes in hexavalent uranium (U(VI)) concentration in the bioreduction system, the results obtained by this method can more accurately reflect the quantity of U(IV) in microorganisms. This work can help us to better understand the bioreduction behavior of uranium in the environment.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3