Determination of natural radionuclides and heavy metal concentrations in the groundwater and adjacent areas of the Kattakurgan reservoir, Uzbekistan

Author:

Tukhtaev Ulugbek12,Khasanov Shakhboz134ORCID,Fayzullayev Jaloliddin1,Safarov Akmal1,Togaev Bayramali1,Afsharipour Seyedkarim45

Affiliation:

1. Samarkand State University , Samarkand 140104 , Uzbekistan

2. Samarkand Branch of National Institute of Metrology of Uzbekistan , Samarkand 140105 , Uzbekistan

3. Institute of Modern Physics , Chinese Academy of Sciences , Lanzhou 730000 , China

4. University of Chinese Academy of Sciences , Beijing 100049 , China

5. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute , Chinese Academy of Sciences , Beijing 100101 , China

Abstract

Abstract We conducted a comprehensive assessment of the Kattakurgan reservoir, alongside adjacent wells and boreholes, to measure the concentrations of natural radionuclides, heavy metals, and associated radiological hazards. Using NaI(Tl) crystal scintillation gamma spectrometers, we determined radionuclide levels in water and sediment. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for heavy metal analysis. Our results showed radionuclide concentrations in reservoir water for 226Ra (0.8 Bq/L), 232Th (0.4 Bq/L), and 40K (0.4 Bq/L) were within the limits set by the World Health Organization (WHO). In contrast, deep well water samples showed elevated 226Ra concentrations (1.5 Bq/L). Sediment samples’ radionuclide levels were in line with UNSCEAR guidelines. Barium was the most notable heavy metal, with a concentration of 68.08 μg/L. While most radiation hazard indices remained within safety limits, the gamma index recorded a value of 1.057 Bq/kg. Our research provides valuable data for water quality assessment. The methods described can be applied to other reservoir studies. Regular monitoring is recommended for continuous safety evaluation, and further studies on biotic samples are suggested to enhance understanding of the reservoir’s ecosystem health.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3