Alpha track registration and revelation in CR-39 using new etching method for ultratrace alpha radioactivity quantification in solution media

Author:

Chavan Sushma S.1,Mhatre Amol M.2,Pandey Ashok K.2,Bagla Hemlata K.1

Affiliation:

1. Department of Nuclear and Radiochemistry , Kishinchand Chellaram College , Churchgate , Mumbai 400 020 , India

2. Radiochemistry Division, Bhabha Atomic Research Centre , Trombay , Mumbai 400 085 , India

Abstract

Abstract A CR-39 based method was developed for measuring the ultra-trace alpha radio activities in aqueous samples having curie levels of γ/β-radio activities. The chemical etching method was optimized to reveal the alpha tracks in CR-39. This new chemical etching method involved the use of a phase transfer catalyst tetraethylammonium bromide which reduced the track revelation induction time without deteriorating the track-etch parameters. The alpha track-etch parameters such as bulk-etch rate, track-etch rate, induction time, and the critical angle of alpha track registration were measured at 60 and 70 °C, with and without using a phase transfer catalyst in the chemical etching for the comparison and optimization. The track registration efficiency of CR-39 in the solution medium was measured using the samples having known alpha activity of mixPu, and value obtained was found to be (4.42 ± 0.12) × 10−4 cm. The registration efficiency value thus obtained was corroborated with the expected efficiency expected from the calculated range of alpha particles in the solution. This CR-39 based method was employed to quantify the alpha activity, as low as 0.2 Bq mL−1, in the aqueous radiopharmaceutical samples having the curie levels of γ/β radio activities.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Etching and optical properties of 1–2 MeV alpha particles irradiated CR-39 radiation detectors;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3