Restructuring of ultra-thin branches in multi-nucleated silicon nanowires

Author:

Lee Youjin V.1ORCID,Meng Lingyuan2ORCID,Ostroff Eleanor1ORCID,Tian Bozhi134ORCID

Affiliation:

1. Department of Chemistry , University of Chicago , Chicago , IL 60637, USA

2. Pritzker School of Molecular Engineering, University of Chicago , Chicago , IL 60637, USA

3. James Franck Institute, University of Chicago , Chicago , IL 60637, USA

4. The Institute for Biophysical Dynamics, University of Chicago , Chicago , IL 60637, USA

Abstract

Abstract The synthetic tunability of semiconductor nanowires has enabled researchers to apply these materials in a variety of applications from energy harvesting to biological stimulation. One of the most intensely researched areas is the synthesis of branched nanowires, or nano-tree structures, owing to their high surface area. In this paper, we present a synthetic protocol that enables the growth of ultra-thin nanowire branches on a primary nanowire. Specifically, the method yields tightly distributed branches, whose locality is unique to our method. We furthermore induce the transformation of these branches into spheroidal superstructures. We explain how an Ostwald ripening-like mechanism can account for such a transformation. We suggest how our method can expand the synthetic toolset of branched nanowires, thus enabling the development of applications.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference36 articles.

1. B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, S. J. B. Yoo. Opt. Express22, 145 (2014).

2. T. J. Kempa, C. M. Lieber. Pure Appl. Chem.86, 13 (2014).

3. A. Zhang, C. M. Lieber. Chem. Rev.116, 215 (2016).

4. Y. Jiang, B. Tian. Nat. Rev. Mater.3, 473 (2018).

5. L. N. Quan, J. Kang, C.-Z. Ning, P. Yang. Chem. Rev.119, 9153 (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semiconductor Nanowire‐Based Cellular and Subcellular Interfaces;Advanced Functional Materials;2021-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3