Numerical study of the FRP-concrete bond behavior under thermal variations

Author:

Dimitri Rossana1,Rinaldi Martina1,Tornabene Francesco1,Micelli Francesco1

Affiliation:

1. Department of Innovation Engineering, School of Engineering, University of Salento , 73100 , Lecce , Italy

Abstract

Abstract In a context where daily and seasonal temperature changes or potential fire exposure can affect the mechanical response of structures strengthened with fiber-reinforced polymer (FRP) composites during their life cycle, the present work studies the bond behavior of FRP laminates glued to concrete substrates under a thermal variation. The problem is tackled computationally by means of a contact algorithm capable of handling both the normal and tangential cohesive responses, accounting for the effect of thermal variations on the interfacial strength and softening parameters, which defines the failure surface and post cracking response of the selected specimen. A parametric investigation is performed systematically to check for the effect of thermo-mechanical adhesive and geometrical properties on the debonding load of the FRP-to-concrete structural system. The computational results are successfully validated against some theoretical predictions from literature, which could serve as potential benchmarks for developing further thermo-mechanical adhesive models, even in a coupled sense, for other reinforcement-to-substrate systems, useful for design purposes in many engineering applications.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3