Synthesis and characterization of elemental iron and iron oxide nano/microcomposite particles by thermal decomposition of ferrocene

Author:

Amara Daniel1,Margel Shlomo1

Affiliation:

1. 1Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar Ilan University, 52900 Ramat Gan, Israel

Abstract

AbstractThe unique chemical and physical properties of the nano and microscale materials have led to important roles in the several scientific and technological fields. The magnetic nano/microparticles are of great interest because of its potential applications in, e.g., hyperthermia, magnetic resonance imaging (MRI), catalytic applications, etc. The decomposition of iron pentacarbonyl is one of the most common methods for the preparation of magnetic iron oxide and iron nanoparticles. However, Fe(CO)5 is severely toxic and alternative precursors should be used. Here, we describe the recent advances in the synthesis and characterization of the elemental iron and iron oxide nano/microcomposite particles by the thermal decomposition of ferrocene. The described synthesis process is based on simple nontoxic approaches including, for example, a solventless process. The particle size and size distribution as well as their composition, crystallinity, shape, and magnetic properties can be controlled via the synthesis conditions.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3