Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor

Author:

Tang Xiaoning1,Cheng Deshan1,Ran Jianhua12,Li Daiqi1,He Chengen1,Bi Shuguang12,Cai Guangming1,Wang Xin3

Affiliation:

1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University , Wuhan 430200 , China

2. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University , Wuhan 430200 , China

3. Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University , Brunswick 3056 , Australia

Abstract

Abstract Yarn-based strain sensor is an emerging candidate for the fabrication of wearable electronic devices. The intrinsic properties of yarn, such as excellent lightweight, flexibility, stitchability, and especially its highly stretchable performance, stand out the yarn-based strain sensor from conventional rigid sensors in detection of human body motions. Recent advances in conductive materials and fabrication methods of yarn-based strain sensors are well reviewed and discussed in this work. Coating techniques including dip-coating, layer by layer assemble, and chemical deposition for deposition of conductive layer on elastic filament were first introduced, and fabrication technology to incorporate conductive components into elastic matrix via melt extrusion or wet spinning was reviewed afterwards. Especially, the recent advances of core–sheath/wrapping yarn strain sensor as-fabricated by traditional spinning technique were well summarized. Finally, promising perspectives and challenges together with key points in the development of yarn strain sensors were presented for future endeavor.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3