The multiscale enhancement of mechanical properties of 3D MWK composites via poly(oxypropylene) diamines and GO nanoparticles

Author:

Zuo Hong-mei1,Li Dian-sen12,Hui David3,Jiang Lei1

Affiliation:

1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing100191, China

2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100191, China

3. Department of Mechanical Engineering, University of New Orleans, New Orleans, LA 70148, United States of America

Abstract

AbstractInterfacial bonding between the fibers and matrix plays a large role in mechanical properties of composites. In this paper, poly(oxypropylene) diamines (D400) and graphene oxide (GO) nanoparticles were grafted on the desized 3D multi axial warp knitted (MWK) glass fiber (GF) fabrics. The surface morphology and functional groups of modified glass fibers were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectra (FT-IR). Out-of-plane compression properties and the failure mechanisms of composites at different temperature were tested and analyzed. The results revealed that GO nanoparticles were successfully grafted on fibers under the synergistic effect of D400. In addition, D400-GO-grafted composite possessed the highest mechanical properties than desized composite and GO-grafted composite. Their strength and modulus were improved by 10.16%, 10.06%, 8.92%, 8.75%, 7.76% and 40.38%, 32.74%, 29.85%, 26.98%, 25.16% compared to those of desized composites at 30C, 60C, 90C, 120C, 150C, respectively. The damage to D400-GO-grafted composite was yarns fracture accompanied with fibers breakage, matrix cracking, interface debonding. At higher temperature, interlayer slipping with matrix plasticization was the main failure mode.

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3