A facile method to synthesize nZVI-doped polypyrrole-based carbon nanotube for Ag(i) removal

Author:

Zhang Wen-Juan1,Ding Ye-Zhi2,Wang Ya-Xian2,Wang You-Liang3,Fei Yu-Long2,Ran Meng-Yu2

Affiliation:

1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology , Lanzhou , 730050 , China

2. Department of Materials Science and Engineering, Lanzhou University of Technology , Lanzhou , 730050 , China

3. School of Mechanical and Electrical Engineering, Lanzhou University of Technology , Lanzhou , 730050 , China

Abstract

Abstract The pollution of silver ion (Ag(i)) has become a serious environmental threat and hazard to ecosystem and human health. Thus, the nanoscale zero valent iron (nZVI)-doped polypyrrole-based carbon nanotube (nZVI/CNT) composites were synthesized by a facile method to remove Ag(i) from wastewater due to the toxicity and scarcity nature of Ag(i). In this process, Fe3+ initiated the self-assembly of polypyrrole tubes in the presence of methyl orange, while it also served as an iron source generated nZVI/CNTs by carbothermal reduction method. The nZVI/CNT composites exhibited a homogeneous tubular structure, and the nZVI formed were uniformly dispersed in the nZVI/CNT composites. The nZVI/CNT composites were used as an adsorbent for the removal of Ag(i) and showed a higher adsorption capacity compared to nZVI and CNTs, with a maximum adsorption capacity of 522.41 mg g−1. Ag(i) was adsorbed on nZVI/CNT composites by ion exchange and chelation, where Ag(i) was reduced to non-toxic Ag due to the redox reaction among pyrrolic-N, nZVI, and Ag(i). The adsorption process of Ag(i) on nZVI/CNT composites was dominated by monolayer adsorption. According to our results, nZVI/CNT composites can be used as economical treatment for wastewater containing Ag(i).

Publisher

Walter de Gruyter GmbH

Subject

Surfaces, Coatings and Films,Process Chemistry and Technology,Energy Engineering and Power Technology,Biomaterials,Medicine (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3