Construction grammar and procedural semantics for human-interpretable grounded language processing

Author:

De Vos Liesbet1ORCID,Nevens Jens2ORCID,Van Eecke Paul2ORCID,Beuls Katrien1ORCID

Affiliation:

1. Faculté d’informatique , Université de Namur , Namur , Belgium

2. Artificial Intelligence Laboratory , Vrije Universiteit Brussel , Brussels , Belgium

Abstract

Abstract Grounded language processing is a crucial component in many artificial intelligence systems, as it allows agents to communicate about their physical surroundings. State-of-the-art approaches typically employ deep learning techniques that perform end-to-end mappings between natural language expressions and representations grounded in the environment. Although these techniques achieve high levels of accuracy, they are often criticized for their lack of interpretability and their reliance on large amounts of training data. As an alternative, we propose a fully interpretable, data-efficient architecture for grounded language processing. The architecture is based on two main components. The first component comprises an inventory of human-interpretable concepts learned through task-based communicative interactions. These concepts connect the sensorimotor experiences of an agent to meaningful symbols that can be used for reasoning operations. The second component is a computational construction grammar that maps between natural language expressions and procedural semantic representations. These representations are grounded through their integration with the learned concepts. We validate the architecture using a variation on the CLEVR benchmark, achieving an accuracy of 96 %. Our experiments demonstrate that the integration of a computational construction grammar with an inventory of interpretable grounded concepts can effectively achieve human-interpretable grounded language processing in the CLEVR environment.

Funder

Fonds Wetenschappelijk Onderzoek

European Commission

Waalse Gewest

Publisher

Walter de Gruyter GmbH

Reference55 articles.

1. Alomari, Muhannad, Fangjun Li, David C. Hogg & Anthony G. Cohn. 2022. Online perceptual learning and natural language acquisition for autonomous robots. Artificial Intelligence 303. 103637. https://doi.org/10.1016/j.artint.2021.103637.

2. Andreas, Jacob, Marcus Rohrbach, Trevor Darrell & Dan Klein. 2016. Learning to compose neural networks for question answering. In Kevin Knight, Ani Nenkova & Owen Rambow (eds.), Proceedings of the 2016 conference of the North American chapter of the Association for Computational Linguistics: Human language technologies, 1545–1554. San Diego, CA: Association for Computational Linguistics.

3. Beuls, Katrien & Paul Van Eecke. 2023. Fluid construction grammar: State of the art and future outlook. In Claire Bonial & Harish Tayyar Madabushi (eds.), Proceedings of the first International Workshop on Construction Grammars and NLP (CxGs+NLP, GURT/SyntaxFest 2023), 41–50. Washington, D.C.: Association for Computational Linguistics.

4. Beuls, Katrien & Paul Van Eecke. 2024. Construction grammar and artificial intelligence. In Mirjam Fried & Kiki Nikiforidou (eds.), The Cambridge handbook of construction grammar. Forthcoming. Cambridge, United Kingdom: Cambridge University Press.

5. Beuls, Katrien, Paul Van Eecke & Vanja Sophie Cangalovic. 2021. A computational construction grammar approach to semantic frame extraction. Linguistics Vanguard 7(1). 20180015. https://doi.org/10.1515/lingvan-2018-0015.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3