Author:
Banks H. Thomas,Catenacci Jared,Hu Shuhua
Abstract
AbstractWe investigate the feasibility of quantifying properties of a composite dielectric material through the reflectance, where the permittivity is described by the Lorentz model in which an unknown probability measure is placed on the model parameters. We summarize the computational and theoretical framework (the Prohorov metric framework) developed by our group in the past two decades for nonparametric estimation of probability measures using a least-squares method, and point out the limitation of the existing computational algorithms for this particular application. We then improve the algorithms, and demonstrate the feasibility of our proposed methods by numerical results obtained for both simulated data and experimental data for inorganic glass when considering the resonance wavenumber as a distributed parameter. Finally, in the case where the distributed parameter is taken as the relaxation time, we show using simulated data how the addition of derivative measurements improves the accuracy of the method.
Funder
National Institute of Allergy and Infectious Diseases
Air Force Office of Scientific Research
Army Research Office
National Science Foundation
US Department of Education Graduate Assistance in Areas of National Need (GAANN)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献