Inverse problem of breaking line identification by shape optimization

Author:

Ghilli Daria1,Kunisch Karl2,Kovtunenko Victor A.3

Affiliation:

1. Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstrasse 36, 8010Graz, Austria

2. Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstrasse 36, 8010Graz; and RICAM Institute, Altenbergerstrassee 69, 4040 Linz, Austria

3. Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstrasse 36, 8010Graz, Austria; and Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia

Abstract

AbstractAn inverse breaking line identification problem formulated as an optimal control problem with a suitable PDE constraint is studied. The constraint is a boundary value problem describing the anti-plane equilibrium of an elastic body with a stress-free breaking line under the action of a traction force at the boundary. The behavior of the displacement is observed on a subset of the boundary, and the optimal breaking line is identified by minimizing the {L^{2}}-distance between the displacement and the observation. Then the optimal control problem is solved by shape optimization techniques via a Lagrangian approach. Several numerical experiments are carried out to show its performance in diverse situations.

Funder

H2020 European Research Council

Austrian Science Fund

Russian Foundation for Fundamental Investigations

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Reference62 articles.

1. First-order and second-order sensitivity analyses for a body with a thin rigid inclusion;Math. Methods Appl. Sci.,2016

2. Determination of cracks having arbitrary shapes with the boundary integral equation method;Eng. Anal. Bound. Elem.,1995

3. High precision identification of an object: Optimality-conditions-based concept of imaging;SIAM J. Control Optim.,2014

4. Topological optimality condition for the identification of the center of an inhomogeneity;Inverse Problems,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3