CBSF: A New Empirical Scoring Function for Docking Parameterized by Weights of Neural Network

Author:

Syrlybaeva Raulia R.1,Talipov Marat R.2

Affiliation:

1. Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces, New Mexico 88003 , United States ; College of Pharmacy , University of Georgia , Athens , Georgia 30602 , United States

2. Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States

Abstract

Abstract A new CBSF empirical scoring function for the estimation of binding energies between proteins and small molecules is proposed in this report. The final score is obtained as a sum of three energy terms calculated using descriptors based on a simple counting of the interacting protein-ligand atomic pairs. All the required weighting coefficients for this method were derived from a pretrained neural network. The proposed method demonstrates a high accuracy and reproduces binding energies of protein-ligand complexes from the CASF-2016 test set with a standard deviation of 2.063 kcal/mol (1.511 log units) and an average error of 1.682 kcal/mol (1.232 log units). Thus, CBSF has a significant potential for the development of rapid and accurate estimates of the protein-ligand interaction energies.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Mathematical Physics,Molecular Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3