Affiliation:
1. Instituto de Matemáticas y sus Aplicaciones, Universidad Sergio Arboleda, Bogotá, Colombia
Abstract
Abstract
In this paper, we define the k-Fibonacci and the k-Lucas quaternions. We investigate the generating functions and Binet formulas for these quaternions. In addition, we derive some sums formulas and identities such as Cassini’s identity.
Reference27 articles.
1. [1] M. Akyiğit, H. Kösal and M. Tosun, Split Fibonacci quaternions, Adv. Appl. Clifford Algebras, 23(2013), 535-545.
2. [2] C. Bolat and H. Köse, On the properties of k-Fibonacci numbers, Int. J. Contemp. Math. Sciences 5(22)2010, 1097- 1105.
3. [3] S. Falcón, On the k-Lucas numbers, Int. J. Contemp. Math. Sciences, 6(21)(2011), 1039-1050.
4. [4] S. Falcón, The k-Fibonacci matrix and the Pascal matrix, Cent. Eur. J. Math., 9(6)(2011), 1403-1410.
5. [5] S. Falcón and A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos Solitons Fractals 39(3)(2009), 1005-1019.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献