Inversion of Weinstein intertwining operator and its dual using Weinstein wavelets

Author:

Gasmi Abdessalem1,Ben Mohamed Hassen2,Bettaibi Néji3

Affiliation:

1. Department of Mathematics, Faculty of Sciences, Taibah University, Medina , Saudi Arabia

2. Department of Mathematics, Faculty of Sciences of Gabes, Gabes University, Gabes , Tunisia

3. Department of Mathematics, Faculty of Sciences, Qassim University, Buraydah , Saudi Arabia

Abstract

Abstract In this paper, we consider the Weinstein intertwining operator ℜa, d W and its dual tR a,d W. Using these operators, we give relations between the Weinstein and the classical continuous wavelet transforms. Finally, using the Weinstein continuous wavelet transform, we deduce the formulas which give the inverse operators of R a,d W and tR a,d W.

Publisher

Walter de Gruyter GmbH

Reference16 articles.

1. [1] I. A. Aliev and B. Rubin, Parabolic potentials and wavelet transform with the generalized translation, Studia Math. 145 (2001) Nr1, p. 1-16.

2. [2] H. Ben Mohamed, N. Bettaibi and S. H. Jah, Sobolev type spaces associated with the Weinstein operator, Int. Journal of Math. Analysis, Vol. 5, Nr. 28, (2011), p. 1353-1373.

3. [3] H. Ben Mohamed, B. Ghribi, Weinstein-Sobolev spaces of exponential type and applications. To appear in Acta Mathematica Sinica, English Series (2012)p. 1-18.

4. [4] Z. Ben Nahia, Fonctions harmoniques et proprietés de la moyenne as- sociées á l'opérateur de Weinstein, Thése 3éme cycle Maths. (1995) Department of Mathematics Faculty of Sciences of Tunis. Tunisia.

5. [5] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the Weinstein operator, \ Proceedings " de la Conférence Internationale de Théorie de Potentiel, I. C. P. T. 94, tenue á Kouty ( en République Tchéque ) du 13-20 Août 1994.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Scale Localization Operators in the Weinstein Setting;Results in Mathematics;2022-11-17

2. Two-wavelet theory in Weinstein setting;International Journal of Wavelets, Multiresolution and Information Processing;2022-06-25

3. Wavelet packet analysis associated with the Weinstein operator on $${\mathbb {R}}^{d+1}_{+}$$;The Journal of Analysis;2022-05-27

4. Continuous wavelet transform and uncertainty principle related to the Weinstein operator;Integral Transforms and Special Functions;2018-01-24

5. New results on the continuous Weinstein wavelet transform;Journal of Inequalities and Applications;2017-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3