A transient analysis to the M(τ)/M(τ)/k queue with time-dependent parameters

Author:

El-Paoumy Mahdy Shibl1,Alqawba Mohammed2,Radwan Taha23

Affiliation:

1. Department of Statistics, Faculty of Commerce, Al-Azhar University, Girls’ Branch , Dkhlia , Egypt

2. Department of Mathematics, College of Science and Arts, Qassim University , Ar Rass , Saudi Arabia

3. Department of Mathematics and Statistics, Faculty of Management Technology and Information Systems, Port Said University , Port Said , Egypt

Abstract

Abstract This work considers the infinite multi-server Markovian queueing model with balking and catastrophes where the rates of arrivals, service, balking, and catastrophes are time dependent. The catastrophes arrive as negative customers to the system. The arrival of negative customers to a queueing system removes the positive customers. The catastrophes may come either from another service station or from outside the system. In this paper, we obtained the transient solution of this model using the approach of probability-generating function. Also, we derived an expression of transient probabilities in terms of Volterra equation of the second kind. Furthermore, we obtained a measure for time-dependent expected number of customers in the system.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3