Heat Transfers Coefficients of Directly and Indirectly Cooled Component Areas during Air-Water Spray Cooling

Author:

Kahra C.1,Nürnberger F.1,Maier H. J.1,Herbst S.1

Affiliation:

1. Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover , An der Universität 2 , Garbsen , Germany

Abstract

Abstract For the determination of heat transfer coefficients in air-water spray cooling, two methods are presented that are capable of characterizing multi-nozzle cooling set-ups. The methods are based on the quenching of thin-walled tubes or massive cylinders on which cooling curves are recorded at given positions with thermocouples. The temperature dependent heat transfer coefficients were calculated by an inverse calculation and the measured temperature-time-curves could be reproduced with these data in numerical cooling simulations. Next, the determined heat transfer coefficients were used for the calculation of an air-water-spray quenching process of a forging part with more challenging geometry. The calculated results were compared with thermocouple measurements. Different calculation variants for the heat transfer on component surfaces not directly exposed to the air-water spray are shown and discussed. ◼

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3