Edaravone exerts brain protective function by reducing the expression of AQP4, APP and Aβ proteins

Author:

Ren Haiyan1,Ma Lijuan2,Gong Xueli2,Xu Chenbo3,Zhang Yuge2,Ma Meilei4,Watanabe Kenichi4,Wen Juan2

Affiliation:

1. Laboratory of Electron Microscopy, Central Laboratory of Xinjiang Medical University, Urumqi830011, P.R. China

2. Department of Pathology and Pathophysiology, Basic Medical College of Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi830011, P.R. China

3. Department of Biochemistry, Basic Medical College of Xinjiang Medical University, Urumqi830011, P.R. China

4. Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata City 950-2181, Japan

Abstract

AbstractThis study aims to investigate the changes of aquaporin-4 (AQP4), β-amyloid precursor proteins (APP) and β-amyloid (Aβ) in brain tissues after cerebral ischemiareperfusion injury (CIRI), and evaluate the effect of edaravone. The Middle Cerebral Artery Occlusion was used to establish CIRI in rats. Rats were divided into control, model and edaravone groups. The neurological deficits in the model group were obvious and the neurological score increased compared to the control group, while the neurological deficits of the edaravone group were improved as the neurological score decreased compared to the model group. The number of pyramidel cells in the hippocampus of the model group was significantly decreased whereas edaravone could reverse this decrease. The model group had significantly higher levels of Aβ, APP and AQP4 than the control group and edaravone group, suggesting that they might be involved in the neuronal cell damage. Meanwhile, the increased AQP4 might enhance the permeability of cells, and thus cause cell damage and neurological deficit. Conclusively, edaravone could reduce brain edema, protect neuronal cells and improve the neurological impairment of rats possibly by decreasing the expression of Aβ, APP and AQP4. Therefore, edaravone may have the potential to treat neurodegenerative diseases (such as Alzheimer's disease).

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3