Revisiting the transition between juvenile and mature wood: a comparison of fibre length, microfibril angle and relative wood density in lodgepole pine

Author:

Mansfield Shawn D.,Parish Roberta,Di Lucca C. Mario,Goudie James,Kang Kyu-Young,Ott Peter

Abstract

AbstractIn an attempt to examine the dynamic inter-relationship among wood density and fibre traits [tracheid length and microfibril angle (MFA)] in lodgepole pine (Pinus contorta), 60 trees were sampled in three age classes from four sites in central British Columbia. Breast height discs were taken and relative wood density was measured along two radii. Tracheid length was assessed on isolated 5-year increments from pith to bark at breast height for each tree. MFA was determined every 50 μm and the 5-mm composite intervals from pith to bark per disc at breast height were used in the analysis. Segmented regression was employed to identify the “juvenile to mature wood” transition point, which revealed transition ages of 31, 18 and 15 for wood density, fibre length and MFA, respectively. These traits were related to primary growth, expressed as area increment, ring width, percent earlywood and height increment during the juvenile wood phase. Comparisons of wood and fibre traits showed a higher congruence between the time of transitions for fibre length and MFA (Pearson correlation coefficient 0.52) than that between fibre length and wood density (0.07), and MFA and wood density (0.16). The cessation of early rapid radial increment growth terminated before wood and fibre transitions to mature wood occurred. Fibre length was significantly, but not strongly, related to ring width and percent earlywood (0.35 for both). The duration of juvenile fibre production was not significantly related to height growth.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3