Author:
Meutzner F.,Nestler T.,Zschornak M.,Canepa P.,Gautam G. S.,Leoni S.,Adams S.,Leisegang T.,Blatov V. A.,Meyer D. C.
Abstract
AbstractCrystallography is a powerful descriptor of the atomic structure of solid-state matter and can be applied to analyse the phenomena present in functional materials. Especially for ion diffusion – one of the main processes found in electrochemical energy storage materials – crystallography can describe and evaluate the elementary steps for the hopping of mobile species from one crystallographic site to another. By translating this knowledge into parameters and search for similar numbers in other materials, promising compounds for future energy storage materials can be identified. Large crystal structure databases like the ICSD, CSD, and PCD have accumulated millions of measured crystal structures and thus represent valuable sources for future data mining and big-data approaches. In this work we want to present, on the one hand, crystallographic approaches based on geometric and crystal-chemical descriptors that can be easily applied to very large databases. On the other hand, we want to show methodologies based onab initioand electronic modelling which can simulate the structure features more realistically, incorporating also dynamic processes. Their theoretical background, applicability, and selected examples are presented.
Subject
General Physics and Astronomy,General Materials Science,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献