Combined Method for Quantitative Characterisation of Fluid Flow

Author:

Ivanov Yatchko,Kavardjikov Vasil,Pashkuleva Dessislava

Abstract

Abstract A method has been proposed for quantitative characterization of the flow behaviour of fluids, which is an important problem of applied rheology. Particle Image Velocimetry technique has been used for visualization and measurement of the velocity field. The rheometric study of the fluid is aimed at determining the character of the flow and its dynamic viscosity. It is shown that the experimental data obtained for the velocity field and the viscosity are necessary and sufficient for determining the shear stress field at each point of the flow bulk. The major part of the investigations are performed using a Newtonian fluid (epoxy resin), but some data for the non-Newtonian fluid (solution of xantan) are shown too. The flow is produced by gravity in a system of tubes (a barrel and a capillary) with different round crossections. The possibility of further improvement of the combined rheo-optical method is shown.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference8 articles.

1. Laser photochromic velocimetry of vorticity and pressure field - two - dimensional flow in a curved wessel;Park;Exp Fluids,1999

2. Particle - Imaging Techniques for Experimental Fluid Mechanics;Adrian;Annu Rev Fluid Mech,1991

3. Ultrasound Doppler based in - line rheometry of highly concentrated suspensions;Ouriev;Appl Rheol,2000

4. The use of speck - le photography in composite material rheology Theoretical;Ivanov;Appl Mech,1998

5. Accuracy in electronic speckle pho - tography;Sjodahl;Appl Optics,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3