Coefficient of thermal expansion and mechanical properties of modified fiber-reinforced boron phenolic composites

Author:

Zhao Chenglong1,Qin Yan1,Wang Xiaotian1,Xiao Han1

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology , Wuhan , China

Abstract

Abstract Boron phenolic resin is widely used in the aerospace field because of its excellent thermal properties. In this article, nitrile rubber powder was added to phenolic resin to modify fiber-reinforced phenolic resin composites. The results showed that the tensile strength continued to decrease; the elongation ratio increased from 20.01% to 32.04%; and flexural strength and flexural modulus reached the highest values of 188 and 9,401 MPa, respectively. Thermal analysis showed that rubber had little effect on the heat resistance at low temperatures, especially below 350°C. Furthermore, the coefficient of thermal expansion of the composites increased from 8.9 × 10−6 to 1.5 × 10−5 K−1, increasing by nearly 70%. The electron microscopy images showed a tortuous fracture path in modified composites, which indicated that rubber powder–modified phenolic composites had a ductile fracture.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3