Numerical simulation into influence of airflow channel quantities on melt-blowing airflow field in processing of polymer fiber

Author:

Guo Dongjun1,Zhu Zhisong1,Yuan Jie2

Affiliation:

1. Engineering Training Center, Nantong University , Nantong , 226019 , China

2. Nantong Acetate Fiber Co., Ltd. , Nantong , 226000 , China

Abstract

Abstract To obtain better airflow field characteristics of melt-blowing and acquire slender melt-blowing fiber, a new die with multi-channel of melt-blowing airflow was designed. The airflow field under the spinneret hole of the melt-blowing die was simulated and analyzed using computational fluid dynamics method, and distribution rules of the ordinary die and the new die on the airflow field along the spinning centerline were compared and discussed. The melt-blowing fiber diameter distribution for the ordinary die and the new die was numerically calculated using a stretching model of the melt-blowing fiber. In contrast with an ordinary die, the new melt-blowing die enhances the average speed in main stretching zone by 89.8% and increases the peak speed by 50.4%. The higher airflow temperature of new die improves the softening degree and melting fluidity of the polymer. Meanwhile, the smaller turbulence intensity and the reverse speed of the new die make airflow more stable and reduce disturbance and adhesion of the fiber, and a larger pressure difference and a peak pressure can accelerate the refinement and attenuation of the fiber. The new melt-blowing die with airflow multi-channel is conducive to extension, which is a better choice in the manufacturing process of nonwoven melt-blowing fibers.

Publisher

Walter de Gruyter GmbH

Subject

Polymers and Plastics,Physical and Theoretical Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3