Computational Estimation of Football Player Wages

Author:

Yaldo L.1,Shamir L.1

Affiliation:

1. Lawrence Technological University

Abstract

Abstract The wage of a football player is a function of numerous aspects such as the player’s skills, performance in the previous seasons, age, trajectory of improvement, personality, and more. Based on these aspects, salaries of football players are determined through negotiation between the team management and the agents. In this study we propose an objective quantitative method to determine football players’ wages based on their skills. The method is based on the application of pattern recognition algorithms to performance (e.g., scoring), behavior (e.g., aggression), and abilities (e.g., acceleration) data of football players. Experimental results using data from 6,082 players show that the Pearson correlation between the predicted and actual salary of the players is ~0.77 (p < .001). The proposed method can be used as an assistive technology when negotiating players salaries, as well as for performing quantitative analysis of links between the salary and the performance of football players. The method is based on the performance and skills of the players, but does not take into account aspects that are not related directly to the game such as the popularity of the player among fans, predicted merchandise sales, etc, which are also factors of high impact on the salary, especially in the case of the team lead players and superstars. Analysis of player salaries in eight European football leagues show that the skills that mostly affect the salary are largely consistent across leagues, but some differences exist. Analysis of underpaid and overpaid players shows that overpaid players tend to be stronger, but are inferior in their reactions, vision, acceleration, agility, and balance compared to underpaid football players.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,General Computer Science

Reference37 articles.

1. Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1):37–66.

2. Aldous, D. (1993). The continuum random tree III. The Annals of Probability, 248–289.

3. Arnedt, R. B. (1998). European union law and football nationality restrictions: the economics and politics of the bosman decision. Emory International Law Review, 12, 1091.

4. Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning for control. In Lazy learning (pp. 75-113). Springer Netherlands.

5. Bishop, C. M. (2006). Pattern recognition and machine learning. Machine Learning, 128, 1–58.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3