A Hybrid High-Order Method for Highly Oscillatory Elliptic Problems

Author:

Cicuttin Matteo1,Ern Alexandre1,Lemaire Simon2

Affiliation:

1. Université Paris-Est , CERMICS (ENPC) , 6–8 avenue Blaise Pascal, 77455 Marne-la-Vallée Cedex 2; and Inria Paris, 2 rue Simone Iff, 75012 Paris , France

2. École Polytechnique Fédérale de Lausanne, FSB-MATH-ANMC, Station 8, 1015 Lausanne, Switzerland; and Inria Lille – Nord Europe , 40 avenue Halley, 59650 Villeneuve d’Ascq , France

Abstract

Abstract We devise a Hybrid High-Order (HHO) method for highly oscillatory elliptic problems that is capable of handling general meshes. The method hinges on discrete unknowns that are polynomials attached to the faces and cells of a coarse mesh; those attached to the cells can be eliminated locally using static condensation. The main building ingredient is a reconstruction operator, local to each coarse cell, that maps onto a fine-scale space spanned by oscillatory basis functions. The present HHO method generalizes the ideas of some existing multiscale approaches, while providing the first complete analysis on general meshes. It also improves on those methods, taking advantage of the flexibility granted by the HHO framework. The method handles arbitrary orders of approximation k 0 {k\geq 0} . For face unknowns that are polynomials of degree k, we devise two versions of the method, depending on the polynomial degree ( k - 1 ) {(k-1)} or k of the cell unknowns. We prove, in the case of periodic coefficients, an energy-error estimate of the form ( ε 1 2 + H k + 1 + ( ε H ) 1 2 ) {(\varepsilon^{\frac{1}{2}}+H^{k+1}+(\frac{\varepsilon}{H})^{\frac{1}{2}})} , and we illustrate our theoretical findings on some test-cases.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis

Reference47 articles.

1. A. Abdulle, W. E, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method, Acta Numer. 21 (2012), 1–87.

2. G. Allaire, Shape Optimization by the Homogenization Method, Appl. Math. Sci. 146, Springer, New York, 2002.

3. G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization, SIAM Multiscale Model. Simul. 4 (2005), no. 3, 790–812.

4. R. Araya, C. Harder, D. Paredes and F. Valentin, Multiscale hybrid-mixed method, SIAM J. Numer. Anal. 51 (2013), no. 6, 3505–3531.

5. D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2002), no. 5, 1749–1779.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalizing the multiscale hybrid-mixed method for reactive-advective-diffusive equations;Computer Methods in Applied Mechanics and Engineering;2024-08

2. A Multiscale Hybrid Method;SIAM Journal on Scientific Computing;2024-05-13

3. Virtual Element Methods Without Extrinsic Stabilization;SIAM Journal on Numerical Analysis;2024-02-20

4. Revisiting the robustness of the multiscale hybrid-mixed method: The face-based strategy;Journal of Computational and Applied Mathematics;2024-01

5. An Improved High-Order Method for Elliptic Multiscale Problems;SIAM Journal on Numerical Analysis;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3