First-Principles Investigations on Structural, Elastic, Dynamical, and Thermal Properties of Earth-Abundant Nitride Semiconductor CaZn2N2 under Pressure

Author:

Zhao Ying-Qin1,Hu Cui-E.2,Liu Lei1ORCID,Cheng Yan1,Cai Ling-Cang3

Affiliation:

1. Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China

2. College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China

3. National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China

Abstract

Abstract We presented a detailed first-principal calculation to study the structural, elastic, dynamical, and thermal properties of a new synthetic ternary zinc nitride semiconductors CaZn2N2 using the generalised gradient approximation (GGA) method. The obtained lattice parameters of CaZn2N2 at 0 K and 0 GPa are in good agreement with the experimental data and other theoretical findings. The pressure dependences of the elastic constants Cij together with other derived mechanical properties of CaZn2N2 compound have also been systematically investigated. The results reveal that CaZn2N2 is mechanically stable up to 20 GPa. The calculated the phonon curves and phonon density of states under different pressures indicate that the CaZn2N2 compound maintains its dynamical stability up to 20 GPa. An analysis in terms of the irreducible representations of group theory obtained the optical vibration modes of this system, and we obtained the frequencies of the optical vibrational modes at Г points together with the atoms that contributed to these vibrations of CaZn2N2. Meanwhile, the pressure dependencies of the frequencies Raman-active and IR-active modes at 0–20 GPa have been studied. The quasi-harmonic approximation (QHA) was applied to calculate the thermal properties of CaZn2N2 as functions of pressures and temperatures such as the heat capacity, thermal expansions, the entropy, and Grüneisen parameter γ.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3