Numerical investigation on implication of innovative hydrogen strut injector on performance and combustion characteristics in a scramjet combustor

Author:

Kireeti Sribhashyam Krishna1,Ravikiran Sastry Gadepalli1,Gugulothu Santosh Kumar1

Affiliation:

1. Department of Mechanical Engineering , National Institute of Technology Andhra Pradesh , Tadepalligudem 534101 , Andhra Pradesh , India

Abstract

Abstract A detailed numerical analysis on a scramjet combustor is carried out by introducing an innovative shaped strut in place of the conventional strut. The design of newly added strut aids in generating intense vorticity which helps in efficient mixing of fuel and oxidizer. The air from the isolator enters the combustor at Mach 2.0, whereas fuel enters from the trailing edge of the strut sonically. In this study the flow dynamics with finite volume approach on commercial software Ansys-Fluent 20.0 to solve the two-dimensional Reynolds average Navier Stokes equation (RANS) with compressible fluid flow by considering the density-based solver with SST k-ε turbulent model. The species transport model with volumetric reaction and finite rate/eddy dissipation turbulence chemistry interaction is adopted to study the combustion phenomena and validated with the experimental results, and it is found that the interaction of the shear shock layer enhances the mixing rate by intensifying turbulence. The modified strut injector’s mixing efficiency is compared to the base strut and observed that with a 40% reduction in length, the modified strut injection technique exhibited a mixing efficiency of >95%. The combustion efficiency is then estimated streamwise, and the plot follows the same pattern as the mixing efficiency with fuel burns down completely when x = 150 mm for the modified strut whereas x = 200 mm for the base strut. This can compact the combustion chamber and increases the thrust-to-weight ratio. So, the innovative strut adopted can improvise the combustion efficiency.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3