Affiliation:
1. School of Materials Science and Engineering , Xi’an Shiyou University , Xi’an , China
2. Sinopec Fourth Construction Co., Ltd , Tianjin , China
Abstract
Abstract
The optimization of friction stir processing (FSP) parameters of magnesium alloy composite (AZ31B–SiC) based on orthogonal test was researched. The results show that the distribution of silicon carbide (SiC) particles, microhardness, tensile property, and fracture mode are greatly affected by the change in process parameters. The results show that the composite was made with a rotating speed of 750 rev·min−1, a traversing speed of 30 mm·min−1, and a processing time of three; the distribution of SiC particles is even, the microhardness difference of composite is small, the tensile property is better, and the ductile fracture is the main fracture mode. Besides, the existence of SiC and the number of FSP have a certain influence on the corrosion performance of the magnesium alloy composite (AZ31B–SiC), and the corrosion resistance of the FSP sample is obviously better than that of the AZ31B magnesium alloy.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献