On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters

Author:

Cai Yong1,Canay Ivan A.1,Kim Deborah1,Shaikh Azeem M.2

Affiliation:

1. Department of Economics , Northwestern University , Evanston , USA

2. Department of Economics , University of Chicago , Chicago , USA

Abstract

Abstract This paper provides a user’s guide to the general theory of approximate randomization tests developed in Canay, Romano, and Shaikh (2017a. “Randomization Tests under an Approximate Symmetry Assumption.” Econometrica 85 (3): 1013–30) when specialized to linear regressions with clustered data. An important feature of the methodology is that it applies to settings in which the number of clusters is small – even as small as five. We provide a step-by-step algorithmic description of how to implement the test and construct confidence intervals for the parameter of interest. In doing so, we additionally present three novel results concerning the methodology: we show that the method admits an equivalent implementation based on weighted scores; we show the test and confidence intervals are invariant to whether the test statistic is studentized or not; and we prove convexity of the confidence intervals for scalar parameters. We also articulate the main requirements underlying the test, emphasizing in particular common pitfalls that researchers may encounter. Finally, we illustrate the use of the methodology with two applications that further illuminate these points: one to a linear regression with clustered data based on Meng, Qian, and Yared (2015. “The Institutional Causes of china’s Great Famine, 1959–1961.” The Review of Economic Studies 82 (4): 1568–611) and a second to a linear regression with temporally dependent data based on Munyo and Rossi (2015. “First-day Criminal Recidivism.” Journal of Public Economics 124: 81–90). The companion R and Stata packages facilitate the implementation of the methodology and the replication of the empirical exercises.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Economics and Econometrics,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3