Wave Function Collapse as a Real Physical Phenomenon Caused by Vacuum Fluctuations Near the Planck Scale

Author:

Winterberg F.1

Affiliation:

1. 1Desert Research Institute, University of Nevada System, Reno, Nevada 89506

Abstract

AbstractIt is hypothesized that the collapse of the wave function is a real physical phenomenon caused by vacuum fluctuations near the Planck scale. The hypothesis is suggested by a recently proposed model (Planck aether model) according to which the fundamental kinematic symmetry is the Galilei-group with the Lorentz invariance as a derived dynamic symmetry. The proposed model has the goal to derive all fields and their interactions from an exactly nonrelativistic operator field equation, resembling Heisenberg's relativistic spinor field equation. In this model the groundstate of the vacuum is a superfluid consisting of an equal number of positive and negative Planck masses interacting via delta function potentials and making the cosmological constant equal to zero. Gauge bosons come from transverse waves propagating in a lattice of quantized vortices, and spinors are explained in this model as exciton-like quasiparticles held together by gauge bosons. Because vector gauge bosons move in the model with the velocity of light, objects held together by the forcc fields of these bosons obey Lorentz invariance as a dynamic symmetry. With the longitudinal wave modes moving with a superluminal phase velocity at energies near the Planck scale, it is conjectured that the quantum mechanical wave function is real and that its collapse results from the entrapment of the wave function by these longitudinal superluminal wave modes. Because these modes occur near the Planck scale their very large zero point fluctuations might therefore trigger the collapse even through dense matter. But because the fluctuations are finite, and because the wave modes have a finite albeit very large phase velocity, the quantum mechanical correlations would be broken above a ccrtain finite length. In the limit of a vanishing Planck length, and hence vanishing gravitational constant G, the phase velocity would become infinite, and the same would be true for the length above which the correlations are broken. One therefore may say that in the limit G = 0 the collapse is infinitely fast and that in this limit the correlations are not broken even over arbitrarily large distances

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Mechanics Interpretation on Planck Scale;Ukrainian Journal of Physics;2020-02-03

2. Winterberg’s Conjectured Breaking of the Superluminal Quantum Correlations over Large Distances;International Journal of Theoretical Physics;2007-09-21

3. Bibliography;New Theories for Chemistry;2005

4. Evidence for an enhanced flow of virtual energy in the progression from inanimate matter and its role in behaviour proper to the animate state;Medical Hypotheses;1999-04

5. STRUCTURE OF THE ELECTRON;Transactions of the Royal Society of South Africa;1999-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3