Multistability Control of Hysteresis and Parallel Bifurcation Branches through a Linear Augmentation Scheme

Author:

Fozin T. Fonzin12ORCID,Leutcho G. D.23,Kouanou A. Tchagna2,Tanekou G. B.4,Kengne R.2,Kengne J.3,Pelap F. B.4

Affiliation:

1. Department of Electrical and Electronic Engineering, Faculty of Engineering and Technology (FET) , University of Buea , PO Box 63, Buea , Cameroon

2. Unité de Recherche de Matière Condensé, dElectronique et de Traitement de Signal (UR-MACETS), Faculty of Sciences, University of Dschang , PO Box 69, Dschang , Cameroon

3. Unité de Recherche d’Automatique et d’Informatique Appliquée (UR-AIA), IUT-FV de Bandjoun, University of Dschang , PO Box 134, Bandjoun , Cameroon

4. Unité de Recherche de Mécanique et de Modélisation des Systèmes Physiques (UR-2MSP), Faculty of Sciences, University of Dschang , PO Box 69, Dschang , Cameroon

Abstract

Abstract Multistability analysis has received intensive attention in recently, however, its control in systems with more than two coexisting attractors are still to be discovered. This paper reports numerically the multistability control of five disconnected attractors in a self-excited simplified hyperchaotic canonical Chua’s oscillator (hereafter referred to as SHCCO) using a linear augmentation scheme. Such a method is appropriate in the case where system parameters are inaccessible. The five distinct attractors are uncovered through the combination of hysteresis and parallel bifurcation techniques. The effectiveness of the applied control scheme is revealed through the nonlinear dynamical tools including bifurcation diagrams, Lyapunov’s exponent spectrum, phase portraits and a cross section basin of attractions. The results of such numerical investigations revealed that the asymmetric pair of chaotic and periodic attractors which were coexisting with the symmetric periodic one in the SHCCO are progressively annihilated as the coupling parameter is increasing. Monostability is achieved in the system through three main crises. First, the two asymmetric periodic attractors are annihilated through an interior crisis after which only three attractors survive in the system. Then, comes a boundary crisis which leads to the disappearance of the symmetric attractor in the system. Finally, through a symmetry restoring crisis, a unique symmetric attractor is obtained for higher values of the control parameter and the system is now monostable.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3