Numerical simulation of impact and entrainment behaviors of debris flow by using SPH–DEM–FEM coupling method

Author:

Qingyun Zeng1,Mingxin Zheng1,Dan Huang2

Affiliation:

1. School of Transportation Engineering, East China Jiaotong University , Nanchang , Jiangxi 330000 , China

2. School of Architectural and Art, Jiangxi Industry Polytechnic College , Nanchang , Jiangxi 330000 , China

Abstract

Abstract Increasing rain levels can easily destabilize and destroy particulate matter in mountainous areas, which can cause natural disasters, such as debris flow and landslides. Constitutive equations and numerical simulation are the theoretical bases for understanding the behavior of these disasters. Thus, this study aimed to investigate the impact of the debris flow and its entrainment behavior on gully bed sediments. We adopted a coupled analysis method based on elastic–plastic constitutive equations by considering the elasto-plasticity of slurry and the elastic characteristics of debris materials. The coupled method consisted of smooth particle hydrodynamic (SPH), discrete element method (DEM), and finite element method (FEM) (SPH–DEM–FEM). SPH particles represented fluid, DEM particles denoted solid immersed in fluid, and FEM elements represented the terrain and structures. The coupling analysis model was used to simulate the coupling contact of solid, liquid, and structures and to describe the entrainment behavior between solid and liquid phases. The model feasibility was verified by comparing the basic simulation results with experimental values of the dam break model and the rotating cylindrical tank model. The coupled model was then combined with the data management and modeling of geographic information system to simulate the 2010 Yohutagawa debris flow event. Finally, we explored the influence of debris shape-related parameters on the debris flow erosion entrainment process.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3