Affiliation:
1. A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili Str., Tbilisi0177, Georgia
2. A. Tsereteli State University, 59 Queen Tamar St., Kutaisi4600, Georgia
Abstract
AbstractSufficient conditions are found for the solvability of the following boundary value problem:u^{(n)}(t)=f(u)(t),\qquad u^{(i-1)}(0)=\varphi_{i}(u^{(n-1)}(0))\quad(i=1,%
\dots,n-1),\qquad\liminf_{t\to+\infty}\lvert u^{(n-2)}(t)|<+\infty,where {f\colon C^{n-1}(\mathbb{R}_{+})\to L_{\mathrm{loc}}(\mathbb{R}_{+})} is a continuous Volterra operator, and {\varphi_{i}\colon\mathbb{R}\to\mathbb{R}} ({i=1,\dots,n}) are continuous functions.
Funder
Shota Rustaveli National Science Foundation
Reference16 articles.
1. Oscillatory properties of solutions of the equation y(n)+p(x)y=0{y^{(n)}+p(x)y=0};Tr. Mosk. Mat. Obs.,1961
2. Oscillatory properties of solutions of the equation y(n)+p(x)y=0{y^{(n)}+p(x)y=0};Tr. Mosk. Mat. Obs.,1961
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献