The 𝑛𝑝-Chart with 3-𝜎 Limits and the ARL-Unbiased 𝑛𝑝-Chart Revisited

Author:

Morais Manuel Cabral1ORCID,Wittenberg Philipp2ORCID,Cruz Camila Jeppesen3

Affiliation:

1. Department of Mathematics & CEMAT (Center for Computational and Stochastic Mathematics) , Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais, 1049-001 Lisboa , Portugal

2. Department of Mathematics and Statistics , Helmut Schmidt University , Holstenhofweg 85, 22043 Hamburg , Germany

3. Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais, 1049-001 Lisboa , Portugal

Abstract

Abstract In the statistical process control literature, counts of nonconforming items are frequently assumed to be independent and have a binomial distribution with parameters ( n , p ) (n,p) , where 𝑛 and 𝑝 represent the fixed sample size and the fraction nonconforming. In this paper, the traditional n p np -chart with 3-𝜎 control limits is reexamined. We show that, even if its lower control limit is positive and we are dealing with a small target value p 0 p_{0} of the fraction nonconforming ( p ) (p) , this chart average run length (ARL) function achieves a maximum to the left of p 0 p_{0} . Moreover, the in-control ARL of this popular chart is also shown to vary considerably with the fixed sample size 𝑛. We also look closely at the ARL function of the ARL-unbiased n p np -chart proposed by Morais [An ARL-unbiased n p np -chart, Econ. Qual. Control 31 (2016), 1, 11–21], which attains a pre-specified maximum value in the in-control situation. This chart triggers a signal at sample 𝑡 with probability one if the observed number of nonconforming items, x t x_{t} , is beyond the lower and upper control limits (𝐿 and 𝑈), probability γ L \gamma_{L} (resp. γ U \gamma_{U} ) if x t x_{t} coincides with 𝐿 (resp. 𝑈). A graphical display for the ARL-unbiased n p np -chart is proposed, taking advantage of the qcc package for the statistical software R. Furthermore, as far as we have investigated, its control limits can be obtained using three different search algorithms; their computation times are thoroughly compared.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Safety, Risk, Reliability and Quality,Statistics and Probability

Reference17 articles.

1. C. A. Acosta-Mejía, Improved p-charts to monitor process quality, IIE Trans. 31 (1999), 509–516.

2. M. A. Argoti and A. C. García, A novel approach for estimating the ARL-bias severity of Shewhart p-charts, Int. J. Qual. Res. 12 (2018), 209–226.

3. C. J. Cruz, Cartas com ARL sem viés para processos i.i.d. e AR(1) com marginais binomiais (On ARL-unbiased charts for i.i.d. and AR(1) binomial counts), Master’s thesis, Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa, 2019.

4. C. J. Geyer and G. D. Meeden, ump: An r package for ump and umpu tests, 2004, https://CRAN.R-project.org/package=ump.

5. C. J. Geyer and G. D. Meeden, Fuzzy and randomized confidence intervals and 𝑃-values, Statist. Sci. 20 (2005), no. 4, 358–387.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ARL-Unbiased Modified np-Chart for Autoregressive Binomial Counts;Stochastics and Quality Control;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3