Affiliation:
1. Department of Mathematics , 92956 University Hassan II , Casablanca , Morocco
Abstract
Abstract
The problem of weighted integrability of the Laguerre–Bessel transform in terms of the moduli of smoothness related to generalized translations is considered. Sufficient conditions are given to solve this problem. These results generalize a famous Titchmarsh’s theorem, due to [L. Rakhimi and R. Daher,
An analog of Titchmarsh’s theorem for the Laguerre–Bessel transform,
Arab. J. Math. Sci. 2023, 10.1108/AJMS-04-2022-0101] in the Laguerre–Bessel hypergroup. Also some results connected with the integrability of Laguerre–Bessel transforms are given.
Reference13 articles.
1. P. L. Butzer, H. Dyckhoff, E. Görlich and R. L. Stens,
Best trigonometric approximation, fractional order derivatives and Lipschitz classes,
Canad. J. Math. 29 (1977), no. 4, 781–793.
2. P. L. Butzer and R. J. Nessel,
Fourier Analysis and Approximation,
Birkhauser, Basel, 1971.
3. L. Gogoladze and R. Meskhia,
On the absolute convergence of trigonometric Fourier series,
Proc. A. Razmadze Math. Inst. 141 (2006), 29–40.
4. E. Jebbari, M. Sifi and F. Soltani,
Laguerre–Bessel wavelet transform,
Glob. J. Pure Appl. Math. 1 (2005), no. 1, 13–26.
5. H. Kortas and M. Sifi,
Lévy–Khintchine formula and dual convolution semigroups associated with Laguerre and Bessel functions,
Potential Anal. 15 (2001), 43–58.